Co-ordination Compounds

1. Assertion (A): The aqueous solution of K₂SO₄.Al(SO₄)₃.24H₂O is acidic in nature.

Reason (R): It ionizes to give a complex ion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2.** Assertion (A): In the complex $K_2[PtCl_6]$ coordination number of Pt is 6.

Reason (R): In the complex six coordination bonds are formed between Pt and chloro ligands.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Tetrahedral complex do not exhibit geometrical isomerism.

Reason (R): In tetrahedral complex all the four positions are identical.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): [Fe(CO)₅] is inner orbital complex.

Reason (R): In the given complex oxidation state of Iron is zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 5. Assertion (A): $[Fe(CN)_6]^{-3}$ is paramagnetic in nature.

Reason (R): $[Fe(CN)_6]^{-3}$ is low spin complex.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** Hexachloroplatinate is a complex anion.

Reason (R): Complex has negatively charged ligands.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

7. Assertion (A): $[Ni(CN)_4]^{-2}$ has zero unpaired electron while that of $[NiCl_4]^{-2}$ has two unpaired e⁻.

Reason (R): $[NiCl_4]^{-2}$ has strong crystal field while $[NiCl_4]^{-2}$ has weak crystal field.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8.** Assertion (A): Cis [Fe(en)₂Cl₂]⁺ can form racemic mixture.

Reason (R): Cis – $[Fe(en)_2Cl_2]^+$ is square planar complex.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- Assertion (A): Square planar complex
 Ma₂b₂ has two optical isomers.

Reason (R): Mirror image of Ma₂b₂ is nonsuper impossible.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

10. Assertion (A): Agl is coloured while AgF is colourless.

Reason (R): Unpaired e⁻ Present In Agl.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** $[CoF_6]^{3-}$ is high spin complex.

Reason (R): F⁻ is strong field ligand.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** Ferrocene is π bonded organometallic compound.

Reason (R): Ferrocene is a sandwich compound.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. Assertion (A): Solution of Na₂CrO₄ in water is intensely coloured.

Reason (R): Ox, state of Cr in Na_2CrO_4 is +6.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** Potassium ferrocyanide is diamagnetic whereas potassium ferricyanide is paramagnetic.

Reason (R): Crystal field splitting in ferrocyanide ion is greater than that of ferricyanide ion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** In a mixture of Cd (II) and Cu(II), (Cd⁺²) gets precipitated in presence of KCN by H₂S.

Reason (R): The stability constant of $[Cu(CN)_4]^{-3}$ is greater than $[Cd(CN)_4]^{2-}$.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

16. Assertion (A): aq. Solution of CoCl₂ is pink in colour. It turns blue in presence of conc, HCl.

Reason (R): It is due to formation of $[CoCl_4]^{2-}$.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **17. Assertion (A):** Triethylenediamine is a bidentate monoanion

Reason (R): Complex containing propylenediamine ligand shows ligand isomerism.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18.** Assertion (A): [Co^{III}(gly)₃] is called innermetallic complex because.

Reason (R): Both the coordination number and charge of the cation are satisfied simultaneously by ligands.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

19. Assertion (A): All tetrahedral complexes are mainly high spin and low spin configurations are rarely observed.

Reason (R): Δ_t is always much smaller even with stronger field ligands and it is never energetically favourable to pair up the electrons.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **20. Assertion (A):** NH₂NH₂ although possesses two electron pairs for donation but not acts as a chelating agent.

Reason (R): The coordination by NH₂NH₂ leads to a three member highly unstable strained ring

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **21. Assertion (A):** The correct order for the wave length of absorption in the visible region is ; $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$

Reason (R): The stability of different complexes depends on the strength of the ligand field of the various ligands.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

22. Assertion (A): The 'spin only' magnetic moment of a green complex, potassium amminetetracyani donitrosonium chromate(I) is 1.73 BM.

Reason (R): To have two d-orbitals empty for d²sp³ hybridisation, the pairing of electrons take place leaving behind one unpaired electron as CN⁻ is a stronger ligand.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 23. Assertion (A): Pentaamminethiocyanato-N-chromium (III) tetrachloridozincate (II) is a coloured compound and is an example of ionisation isomerism.

Reason (R): The compound is paramagnetic and therefore, d-d transition is possible

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24.** Assertion (A): $Cu[Hg(SCN)_4]$ and $Hg[Co(NCS)_4]$ are isomers.

Reason (R): SCN⁻ is an ambidentate ligand.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

25. Assertion (A): Coordination number of Pt in Zeise's salt is 5.

Reason (R): C₂H₄ act as bidentate ligand.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **26.** Assertion (A): Fe^{+3} not used brown ring test of NO_3^{-1}

Reason (R): NO_3^- is first converted into NO_2 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 27. Assertion (A): $[Co(H_2O)_6]^{+3} \rightarrow [Co(H_2O)_6]^{+2}$ changes its colour on reduction.

Reason (R): Crystal field stabilization energy increases on reduction

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

28. Assertion (A): If in $[Co(NH_3)_6]^{+3}$, NH_3 is replaced by H_2O , same wavelength will be absorbed by the complex :

Reason (R): It is a high spin species.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **29.** Assertion (A): $\left[\text{Co} \left(\text{NH}_3 \right)_5 \text{CI} \right] \text{CI}_2$ reacts with excess of AgNO₃ solution to give 2 moles of AgCl.

Reason (R): Primary valencies are ionisable.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	1	2	2	2	1	3	4	3	3	2	2	3	1	1	4	2	1	1
Que.	21	22	23	24	25	26	27	28	29											
Ans.	2	1	4	4	2	3	3	4	1											

